Revisiting the transitional dynamics of business-cycle phases with mixed frequency data
نویسنده
چکیده
This paper introduces a Markov-Switching model where transition probabilities depend on higher frequency indicators and their lags, through polynomial weighting schemes. The MSV-MIDAS model is estimated via maximum likelihood methods. The estimation relies on a slightly modified version of Hamilton’s recursive filter. We use Monte Carlo simulations to assess the robustness of the estimation procedure and related test-statistics. The results show that ML provides accurate estimates, but they suggest some caution in the tests on the parameters involved in the transition probabilities. We apply this new model to the detection and forecast of business cycle turning points. We properly detect recessions in United States and United Kingdom by exploiting the link between GDP growth and higher frequency variables from financial and energy markets. Spread term is a particularly useful indicator to predict recessions in the United States, while stock returns have the strongest explanatory power around British turning points. JEL Classification: C22, E32, E37.
منابع مشابه
The Effects of Oil Price Shocks on Transitional Dynamics of Business Cycles in Iran: Markov Switching Model with Time Varying Transition Probabilities (MS-TVTP)
The business cycles are one of the most important economic indicators that they show the changes in economic activities during time. The study of business cycles is important because the understanding fluctuations in GDP and effective factors on these fluctuations help policy makers to plan better and more efficient. The main purpose of this paper is to investigate the effects of oil price shoc...
متن کاملAnalysis of the Relationship between the Business Cycle and Inflation Gap in Time-Frequency Domain
Controlling the business cycle and minimizing the inflation gap are considered as two major goals for monetary policy. Hence, the policymaker will be able to make more decisive decisions with an awareness of the dynamic relationship and causal relationship between these two variables. Accordingly, the present study uses a discrete and continuous wavelet transform to provide a new understanding ...
متن کاملDating Business Cycle in Oil Exporting Countries
In this paper, we empirically investigate the relationship between oil price changes and output in a group of oil exporting countries. The dynamics of business cycles in Libya, Saudi Arabia, Nigeria, Kuwait, Venezuela and Qatar are modeled by alternative regime switching models. We show that the extension of uni-variate Markov Switching model in order to include oil revenue improves dating busi...
متن کاملRevisiting the Effects of Growth Uncertainty on Inflation in Iran:An Application of GARCH-in-Mean Models
This paper investigates the relationship between inflation and growth uncertainty in Iran for the period of 1988-2008 by using quarterly data. We employ Generalized Autoregressive Conditional Heteroscedasticity in Mean (GARCH-M) model to estimate time-varying conditional residual variance of growth, as a standard measures of growth uncertainty. The empirical evidence shows that growth uncertain...
متن کاملDynamical Analysis of Yeast Cell Cycle Using a Stochastic Markov Model
Introduction: The cell cycle network is responsible of control, growth and proliferation of cells. The relationship between the cell cycle network and cancer emergence, and the complex reciprocal interactions between genes/proteins calls for computational models to analyze this regulatory network. Ample experimental data confirm the existence of random behaviors in the interactions between gene...
متن کامل